Distinctive Klf4 mutants determine preference for DNA methylation status
نویسندگان
چکیده
Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resulted in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant. Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.
منابع مشابه
Methylated cis-regulatory elements mediate KLF4-dependent gene transactivation and cell migration
Altered DNA methylation status is associated with human diseases and cancer; however, the underlying molecular mechanisms remain elusive. We previously identified many human transcription factors, including Krüppel-like factor 4 (KLF4), as sequence-specific DNA methylation readers that preferentially recognize methylated CpG (mCpG), here we report the biological function of mCpG-dependent gene ...
متن کاملIdentification of a non-coding KLF4 transcript generated from intron retention and downregulated in human hepatocellular carcinoma.
The Krüppel-like factor 4 (KLF4) gene is related to various biological processes including stem cell reprogramming and tumorigenesis. In this study, we identified and characterized a non-coding transcript of KLF4, which was designated KLF4‑003, in human liver tissue samples. KLF4‑003 was identified in a number of cell lines by reverse transcription PCR and DNA sequencing. Its expression levels ...
متن کاملHemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoter in vitro and in vivo.
RATIONALE Hemodynamic disturbed flow (DF) is associated with susceptibility to atherosclerosis. Endothelial Kruppel-Like Factor 4 (KLF4) is an important anti-inflammatory atheroprotective transcription factor that is suppressed in regions of DF. OBJECTIVE The plasticity of epigenomic KLF4 transcriptional regulation by flow-mediated DNA methylation was investigated in vitro and in arterial tis...
متن کاملPromoter Hypermethylation of KLF4 Inactivates Its Tumor Suppressor Function in Cervical Carcinogenesis
OBJECTIVE The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However, the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ) in tissues of...
متن کاملA preliminary study of the association between the ABCA1 gene promoter DNA methylation and coronary artery disease risk
Coronary artery disease (CAD) is a common health problem in Iranian population. ATP binding cassette transporter A1 (ABCA1) plays central role in the efflux of the cholesterol from peripheral tissues back to liver. Inactivation of ABCA1 by epigenetic change such as DNA methylation may contribute to the development of CAD. The present study investigated the association between promoter DNA methy...
متن کامل